944 research outputs found

    Spin Current in p-wave Superconducting Rings

    Full text link
    A formula of the spin current in mesoscopic superconductors is derived from the mean-field theory of superconductivity. The spin flow is generated by the spatial fluctuations of d\vec{d} which represents a spin state of spin-triplet superconductors. We discuss a possibility of the circulating spin current in isolated p-wave superconducting rings at the zero magnetic field. The direction of the spin current depends on topological numbers which characterize the spatial configuration of d\vec{d} on the ring.Comment: 4page

    Interplay of Kondo and superconducting correlations in the nonequilibrium Andreev transport through a quantum dot

    Full text link
    Using the modified perturbation theory, we theoretically study the nonequilibrium Andreev transport through a quantum dot coupled to normal and superconducting leads (N-QD-S), which is strongly influenced by the Kondo and superconducting correlations. From the numerical calculation, we find that the renormalized couplings between the leads and the dot in the equilibrium states characterize the peak formation in the nonequilibrium differential conductance. In particular, in the Kondo regime, the enhancement of the Andreev transport via a Kondo resonance occurs in the differential conductance at a finite bias voltage, leading to an anomalous peak whose position is given by the renormalized parameters. In addition to the peak, we show that the energy levels of the Andreev bound states give rise to other peaks in the differential conductance in the strongly correlated N-QD-S system. All these features of the nonequilibrium transport are consistent with those in the recent experimental results [R. S. Deacon {\it et al.}, Phys. Rev. Lett. {\bf 104}, 076805 (2010); Phys. Rev. B {\bf 81}, 12308 (2010)]. We also find that the interplay of the Kondo and superconducting correlations induces an intriguing pinning effect of the Andreev resonances to the Fermi level and its counter position.Comment: 22 pages, 23 figure

    Quantum Hall effects of graphene with multi orbitals: Topological numbers, Boltzmann conductance and Semi-classical quantization

    Get PDF
    Hall conductance σxy\sigma_{xy} as the Chern numbers of the Berry connection in the magnetic Brillouin zone is calculated for a realistic multi band tight-band model of graphene with non-orthogonal basis. It is confirmed that the envelope of σxy\sigma_{xy} coincides with a semi-classical result when magnetic field is sufficiently small. The Hall resistivity ρxy\rho_{xy} from the weak-field Boltzmann theory also explains the overall behaviour of the σxy\sigma_{xy} if the Fermi surface is composed of a single energy band. The plateaux of σxy\sigma_{xy} are explained from semi-classical quantization and necessary modification is proposed for the Dirac fermion regimes.Comment: 5pages, 3figure

    Detection of spin polarization with a side coupled quantum dot

    Full text link
    We propose realistic methods to detect local spin polarization, which utilize a quantum dot side coupled to the target system. By choosing appropriate states in the dot, we can put spin selectivity to the dot and detect spins in the target with small disturbance. We also present an experiment which realizes one of the proposed spin detection schemes in magnetic fields.Comment: 5 pages, 6 figure

    Spin filtering by a periodic nanospintronic devices

    Full text link
    For a linear chain of diamond-like elements, we show that the Rashba spin-orbit interaction (which can be tuned by a perpendicular gate voltage) and the Aharonov-Bohm flux (due to a perpendicular magnetic field) can combine to select only one propagating ballistic mode, for which the electronic spins are fully polarized along a direction that can be tuned by the electric and magnetic fields and by the electron energy. All the other modes are evanescent. For a wide range of parameters, this chain can serve as a spin filter.Comment: Published versio

    Reevaluation of Neutron Electric Dipole Moment with QCD Sum Rules

    Full text link
    We study the neutron electric dipole moment in the presence of the CP-violating operators up to the dimension five in terms of the QCD sum rules. It is found that the OPE calculation is robust when exploiting a particular interpolating field for neutron, while there exist some uncertainties on the phenomenological side. By using input parameters obtained from the lattice calculation, we derive a conservative limit for the contributions of the CP violating operators. We also show the detail of the derivation of the sum rules.Comment: 33 pages, 5 figure

    Josephson pi-state in a ferromagnetic insulator

    Get PDF
    We predict anomalous atomic-scale 0-pi transitions in a Josephson junction with a ferromagnetic-insulator (FI) barrier. The ground state of such junction alternates between 0- and pi-states when thickness of FI is increasing by a single atomic layer. We find that the mechanism of the 0-pi transition can be attributed to thickness-dependent phase-shifts between the wave numbers of electrons and holes in FI. Based on these results, we show that stable pi-state can be realized in junctions based on high-Tc superconductors with La2_2BaCuO5_5 barrier.Comment: 4 pages, 3 figures, Phys. Rev. Lett. (2010) in pres

    Filtering and analyzing mobile qubit information via Rashba-Dresselhaus-Aharonov-Bohm interferometers

    Full text link
    Spin-1/2 electrons are scattered through one or two diamond-like loops, made of quantum dots connected by one-dimensional wires, and subject to both an Aharonov-Bohm flux and (Rashba and Dresselhaus) spin-orbit interactions. With some symmetry between the two branches of each diamond, and with appropriate tuning of the electric and magnetic fields (or of the diamond shapes) this device completely blocks electrons with one polarization, and allows only electrons with the opposite polarization to be transmitted. The directions of these polarizations are tunable by these fields, and do not depend on the energy of the scattered electrons. For each range of fields one can tune the site and bond energies of the device so that the transmission of the fully polarized electrons is close to unity. Thus, these devices perform as ideal spin filters, and these electrons can be viewed as mobile qubits; the device writes definite quantum information on the spinors of the outgoing electrons. The device can also read the information written on incoming polarized electrons: the charge transmission through the device contains full information on this polarization. The double-diamond device can also act as a realization of the Datta-Das spin field-effect transistor.Comment: 13 pages, 8 figure
    corecore